REACTIONS OF THE $(CF_3)_2$ NO RADICAL WITH STRONG OXIDIZERS

KARL 0. CHRISTE, CARL J. SCHACK, RICHARD D. WILSON and DON PILIPOVICH *Rocketdyne (a Division of Rockwell International), Canoga Park, Calif. 91304 (U.S.A.)* **(Received November 24, 1973)**

Summary

The reactions of $(CF_3)_2$ NO with PtF₆, MoF₆, ReF₆, O₂SbF₆ and O₂AsF₆ have been studied. The reaction of $(CF_3)_2$ NO with O_5 SbF₆ presents a new method of producing CF_a radicals chemically at low temperature. This was demonstrated by a new and high yield synthesis of $(CF_3)_2NOCF_3$. In addition, the novel compound $[(CF_3)_2NO]$, CF_2 has been isolated as a by-product from this reaction and was characterized.

Introduction

The bis(trifluoromethy1) nitroxide radical was discovered [1,2] in 1964. Since then, the physical and chemical properties of this unusually stable radical have been studied extensively and were summarized in two recent reviews $[3,4]$. In its reaction chemistry, $(\text{CF}_3)_2$ NO behaves as a pseudohalogen with an oxidizing power similar to or higher than that of Cl_2 [3]. Due to this high oxidizing power, the previously reported studies [3,4] appear to have been limited to combinations with other radicals, additions across double bonds, and reactions with reducing agents. In view of the wellknown stability of the $F_2N=O^*$ cation [5,6] and of hexafluoroacetone which are isoelectronic with COF_2 and the hypothetical $(\text{CF}_3)_2N=O^+$ cation, respectively, it seemed interesting to study the behavior of (CF_3) ₂NO towards strong oxidizers. If the oxidation could be limited to a simple one-electron transfer from $(CF₃)₂NO$ to an oxidizing species A, the following reaction series would allow not only the synthesis of the $(CF_3)_2N=O^+$ cation, but also that of the novel bis(trifluoromethyl)-substituted NF_3O molecule:

$$
(\mathrm{CF}_3)_2\mathrm{NO} + \mathrm{A} \rightarrow (\mathrm{CF}_3)_2\mathrm{NO}^+\mathrm{A}^-
$$

 $(CF_3)_2NO^+A^-$ + $FNO_2 \rightarrow NO_2^+A^-$ + $(CF_3)_2N(O)F$

Although we could not limit the oxidation of $(CF_3)_2NO$ to a one-electron transfer without breakage of chemical bonds, several interesting results were obtained which we report in this paper.

Experimental

Materials

Rhenium hexafluoride and MoF_6 (Ozark Mahoning) and CF_3NO (PCR) were purchased. Platinum hexafluoride was prepared by burning Pt wire in an F_2 atmosphere at -196 °C [7]. The O_2^* salts of AsF₆ and SbF₆ were synthesized by the methods of Beal [B] and Shamir [9], respectively. Bis(trifluoromethyl) nitroxide was prepared [10] from Ago_o and (CF_a)₂NOH, with the latter being synthesized as previously described [1]. Prior to use, all volatile starting materials were purified by fractional condensation and their purity was verified by spectroscopic techniques.

Apparatus

The materials used in this work were manipulated in a well-passivated (with $C(F_3)$ 304 stainless-steel vacuum line equipped with Teflon FEP U traps and 316 stainless-steel bellow-seal valves (Hoke Inc., 425 IF4Y). Pressures were measured with a Heise-Bourdon tube type gauge $(0 - 1500 \text{ mm} \pm 0.1\%)$. Because of the rapid hydrolytic interaction with moisture, all materials were handled outside the vacuum system in the dry nitrogen atmosphere of a glove box.

The infrared spectra were recorded on Perkin-Elmer Model 337 and 457 spectrophotometers in the range 4000 - 250 cm⁻¹. The spectra of gases were obtained using 304 stainless-steel cells of 5 cm path length fitted with AgCl or AgBr windows. The spectra of solids were obtained by pressing two small single-crystal platelets of either AgCl or AgBr into a disk in a Wilks minipellet press. The powdered sample was placed between the platelets before starting the pressing operation.

The Raman spectra were recorded on a Cary Model 83 spectrophotometer using the 4880 Å exciting line and a Claassen filter [111] for the elimination of plasma lines. Glass melting point capillaries were used as sample containers in the transverse-viewing-transverse-excitation technique.

Mass spectra were recorded on a Quad 300 (Electronic Associates Inc.) quadrupole mass spectrometer using a passivated all-stainless-steel inlet system.

The ¹⁹F NMR spectra were recorded at 56.4 MHz on a Varian DA60 NMR spectrometer equipped with a variable-temperature probe. Chemical shifts were determined by the side-band technique.

The $(CF_3)_2NO-MoF_6$ system

Molybdenum hexafluoride (0.90 mmol) and $(CF_3)_2NO$ (1.44 mmol) were combined at -196 °C in a passivated 25 cm³ sapphire stainless-steel reaction tube (Varian Model CS-4250-3). After warming the mixture to 29 "C for 1 h, only unreacted starting materials were recovered.

The (CF,),NO-ReF, system

Rhenium hexafluoride (2.01 mmol) and $(CF_3)_2NO$ (1.88 mmol) when kept at 29 "C for 1 h in a sapphire reactor produced a small amount of a nonvolatile white solid. To increase the yield of this solid, the starting materials were recombined in the reactor and kept at 29° C for 100 h. The volatile products were removed, separated by fractional condensation, measured by PVT and identified by spectroscopic techniques. They consisted of $(CF_3)_2NOCF_3$ (0.29 mmol) , $(\text{CF}_3)_2\text{NO}$ (1.61 mmol) and Re Fe (1.92 mmol). The white solid residue (8 mg) was mainly $NO⁺ReF₆$, but its infrared spectrum also indicated the presence of a new rhenium oxyfluoride anion having strong absorptions at 1059, 1022 and 971 cm^{-1} .

The $(CF_3)_2NO-PtF_6$ *system*

Platinum hexafluoride (1.78 mmol) and $(CF_3)_2$ NO (3.56 mmol) were combined at -196 °C in a sapphire reactor. The mixture was slowly warmed up until the $(CF_3)_2$ NO started to melt and react. The reaction with PtF₆ was very violent (caution!) and the reaction was immediately quenched by cooling to -196 °C. This procedure was repeated several times until the reaction was essentially complete when the reactor was kept at 25 "C for 1 day. The volatile products consisted of COF_2 and CF_4 (4.04 mmol), $(\text{CF}_3)_2\text{NOCF}_3$ (0.54 mmol) and $(\text{CF}_3)_2$ NO (0.73 mmol). The dark-grey solid residue (570 mg) was identified by vibrational spectroscopy as $NO^{\dagger}PtF_6^-$.

The $(CF_3)_2NO-O_2^+AsF_6^-$ system

In a Teflon-FEP ampoule, $(\text{CF}_3)_2$ NO (0.86 mmol) and $\text{O}_2^{\star} \text{AsF}_6^+$ (0.95 mmol) were combined at -196 °C. The mixture was slowly warmed up to 25 °C and a smooth reaction occurred with gas evolution. The volatile products consisted of O_2 (0.90 mmol), (CF₃)₂NO (0.32 mmol) and CF₄ and $COF₂$ (0.98 mmol). The white solid residue consisted of NO⁺AsF₆⁻ (0.48 mmol) indicating that some $O_2^* As F_6^-$ had decomposed irreversibly during the reaction, with the free AsF_5 being absorbed by the metal fluoride surface of the passivated metal line.

The $(CF_3)_2NO-O_2^*SbF_6^-$ system

In a 30 cm³ stainless-steel cylinder, $(CF_3)_2$ NO (1.92 mmol) and $O_2^{\star}SbF_6^{\star}$ 0.73SbF₅ (0.70 mmol) were combined at -196 °C. The mixture was allowed to warm to -21 °C and kept at this temperature for 1 day. The volatile products consisted of O_2 (0.70 mmol), CF_4 and COF_2 (0.74 mmol), $(CF_3)_2NOCF_3$ (0.73 mmol) and $[(CF_3)_2NO]_2CF_2$ (0.16 mmol). The white solid residue consisted of $NO^{\star}SbF_6^{\star} \cdot 0.73SbF_5$ (0.70 mmol).

The CF₃NO-O₂SbF₆⁻ system</sup>

When mixtures of CF_3NO and $O_2^{\star}SbF_6^{\star} \cdot 0.73SbF_5$ with either component in excess were kept for several days at ambient temperature, little interaction occurred. Heating to 80 °C was required for $NO⁺ SbF₆⁻$ formation and $O₂$ evoTABLE 1

Mass spectrum* of $[(CF₃)₂NO]₂CF₂$

 $367, (CF_3)_2NOCF_2ONC_2F_5$, (6); 279, $C_2F_5NOCF_2ONCF_2$, (7); 234, $(CF_3)_2NOCF_2O^*$, $(0+); 218$, $(CF_3)_2NOCF_2^*$, (38); 191, $C_2F_4NOCFON^*$, (0.7); 168, $(CF_3)_2NO^+$, (2.8); 149, $C_2F_5NO^+$, (1.4); 133, $C_2F_5N^+$, (2.8); 130, C₂F₄NO⁺, (90); 127, CF₃NOCO⁺, (0.7); 114, C₂F₄N⁺, (29); 111, C₂F₃NO⁺, (0.7); 108, CF₂NOCO⁺, (0+); 99, CF₃NO⁺, (1.2); 95, C₂F₃N⁺, (0.2); 92, C₂F₂NO⁺, (1); 83, CF₃N⁺, (0.3); 80, CF₂NO⁺, (0.2); 76, C₂F₂N⁺, (0+); 70, CNOCO⁺, (20); 69, CF₃, (1000); 66, CF₂O⁺, (32); 64, CF₂N⁺, (60); 61, CFNO⁺, (3); 57, C_2FN ⁺, (0.2); 50, CF_2^* , (104); 47, CFO⁺, (195); 45, CFN⁺, (14); 44, CO_2^* , (54); 31, CF^* , (106); 30, NO⁺, (340); 26, CN⁺, (3); 19, F⁺, (46); 16,0+, (120); 14, N', (135); 12, C', (11).

* Measured at 70 ev. Rgults quoted as *m/e,* ion, relative intensity.

lution. No evidence was obtained for the formation of any species containing more than one carbon atom. The main products were COF_2 , CF_4 and CF_3NO_2 .

Properties of $[(CF₃)₂NO]$ ₂ $CF₂$

The compound is a stable, colorless liquid having vapor pressures of 3 and 16 mmHg at -31.2 °C and 0 °C, respectively. During fractional condensation, it slowly passed a -64 °C trap and was retained at -78 °C. Its mass spectrum is given in Table 1 and its infrared and Raman spectrum in Fig. 1 and Table 2. The ¹⁹F NMR spectrum showed a 1:2:1 triplet at 67.96 ppm (CF₃) and a multiplet (\sim 13) at 69.77 ppm (CF₂) above the internal standard CFCl₃ with $J(FF) = 6.0$ Hz and an area ratio slightly larger than 6:1. Three additional weak signals were observed at 66.2,66.9 and 73.6 ppm which were broad singlets. The relative peak area of the low-field signal increased for the neat compound and increased further with increasing temperature. In addition, the $CF₃$ signal started to show a low-field component with increasing intensity of the low-field CF_2 signals at ~66 ppm. Analysis: Found: C, 15.7; F, 68.1% . $C_5F_{14}N_2O_2$ requires C, 15.54 ; F, 68.39% .

Results and discussion

Of the strong oxidizers studied, PtF_6 and O_2^* salts are capable of oxidizing the $(CF_3)_2$ NO radical under the given conditions whereas MoF₆ is not. Rhenium hexafluoride with an electron affinity > 90 kcal mol⁻¹ [12] appears capable of slowly oxidizing $(CF_3)_2NO$ at room temperature. These results are in excellent agreement with the apparent [3] high electronegativity of the (CF_3) ₂NO radical. This requirement of a strong oxidizing reagent may also explain the lack of $(CF₃)₂NO⁺$ formation. Instead of a simple one-electron transfer reaction, an oxidative fission of the $N-C$ bond was observed resulting in the formation of CF_4 , NO⁺ salts and significant amounts of CF_3 radicals. In the presence of unreacted $(CF_3)_2$ NO radicals, the CF_3 radical undergoes the following reaction

$$
CF_3 \cdot + (CF_3)_2 NO \cdot \rightarrow (CF_3)_2 NOCF_3
$$

Fig. 1. Vibrational spectrum of $[(CF_3)_2NO)_2CF_2$. A and B: IR spectrum of the gas at **10 and 3 mm, respectively, path length 5 cm, window material AgBr. C and D: Raman spectrum of the liquid with the polarization parallel and perpendicular, respectively. E indicates the spectral slit width.**

Thus, these reactions present a new high yield synthesis of $(CF_3)_2NOCF_3$. However, owing to the commercial availability of $CF₃NO$, the catalytic fluorination of CF_3NO yielding $(CF_3)_2NOCF_3$ in 55% yield [13] appears to be a more attractive synthetic route. A brief study to substitute $(CF_3)_2NO$ by $CF₃NO$ in its reaction with $O₂$ salts did not result in the formation of any two carbon atom species but only $CF₃NO$ oxidation products. This observation agrees with the above postulate that in $(CF_3)_2NO$ an N-C bond is attacked first with CF_4 formation resulting in an excited CF_3NO species which can readily lose a CF₃ radical. The interaction between $(CF_3)_2$ NO and O_2 SbF₆ when carried out under suitable conditions (such as gas phase reaction, use of a carrier gas, $etc.$) may have potential for producing CF_3 radicals under mild

428

TABLE 2 TABLE 2

conditions by chemical means. However, further experiments in this direction were beyond the scope of the present study.

In addition to $(CF_3)_2NOCF_3$ a new compound, $[(CF_3)_2NO]_2CF_2$, was formed in about 20% yield based on O_2^* salt. This indicates that significant amounts of the CF₂ diradical are also formed which interact $(CF₃)₂NO$ according to:

$$
2(CF_3)_2NO + CF_2 \rightarrow [(CF_3)_2NO] _2CF_2
$$

The formation of a carbon species with only two fluorine atoms attached to it, such as CF_2 or COF_2 , is not unreasonable since the formation of CF_4 in the first step will create a fluorine deficiency in the system.

The $[(CF₃)₂NO]₂CF₂$ molecule may be considered as a derivative of the previously reported $(F_2NO)_2CF_2$ molecule [14] in which the fluorines attached to the nitrogen atom are replaced by $CF₃$ groups. The observed mass spectrum (Table 1), vibrational spectrum (Table 2) and 19 F NMR data are in excellent agreement with the suggested structure. Tentative assignments for the more important vibrational modes are given in Table 2. These were made by comparison with the previously reported spectra for $(CF_3)_2N-N$ $(CF_3)_2$ [15] and $[(CF_3)_2NO]_2CO$ [16]. The general agreement between the vibrational spectra of the three compounds is excellent except for the difference in the relative Raman intensities of $v_{sym}(NC_2)$ between $(CF_3)_2N-N(CF_3)_2$ and $[(CF₃)₂NO]₂CF₂$. As pointed out previously [15], the Raman intensities observed for these modes in $(CF_3)_2N-N(CF_3)_2$ are much lower than those usually found for related (CF_3) ,N-type molecules. A more detailed analysis is not warranted due to the size of the molecule and to the possible existence of different rotational isomers as indicated by the NMR spectral data.

The 19 F NMR chemical shifts and coupling constant observed for $[(CF₃)₂NO]₂CF₂$ are in excellent agreement with those reported for the related $(CF_3)_2NOCF_2X$ -type compounds [17,18]. The chemical shift of the $CF₂(OX)₂$ group appears to decrease with decreasing electronegativity of X resulting in the following order for X: $F(84.2)$ [19], NF₂(84) [14], OCF₃ and OOCF₃(79.2) [20], N(CF₃)₂(69.8), SO₂F(53.6) [21]. The fact that in addition to the 69.8 ppm CF₂ signal, three other weak signals having similar chemical shifts were observed for $[(CF₃)₂NO]₂CF₂$ indicates the possible existence of rotational isomers which would not be surprising for this bulky molecule.

Acknowledgements

We thank the Office of Naval Research (Power Branch) for financial support.

References

- **1 W. D. Blackley and R. R. Reinhard, J. Amer. Chem. Sot., 87 (1965) 802.**
- **2 S. P. Makarov, A. Ya. Yakuhovich, S. S. Duhov and A. N. Medvedev, Dokl. Akad. Nauk SSSR, 160 (1965) 1319.**
- 3 P. M. Spaziante, MTP International Review of Science, Inorganic Series, Vol. 3, Butterworths, London, 1972, p. 141.
- 4 D. P. Babb and J. M. Shreeve, Intrasci. Chem. Rep., 5 (1971) 55.
- 5 K. 0. Christe and W. Maya, Inorg. Chem., 8 (1969) 1253.
- 6 C. A. Wamser, W. B. Fox, B. Sukornick, J. R. Holmes, B. B. Stewart, R. Juurik, N. Vanderkooi and D. Gould, Inorg. Chem., 8 (1969) 1249.
- 7 B. Weinstock, H. H. Claassen and J. G. Malm, J. Amer. Chem. Soc., 79 (1957) 5832.
- 8 J. B. Beal, C. Pupp and W. E. White, Inorg. Chem., 8 (1969) 828.
- 9 J. Shamir and J. Binenboym, Inorg. Chim. Acta, 2 (1968) 37.
- 10 H. G. Ang, Chem. Commun., (1968) 1320.
- 11 H. H. Claassen, H. Selig and J. Shamir, Appl. Spectrosc., 23 (1969) 8.
- 12 N. Bartlett, Angew. Chem. Int. Ed. Engl., 7 (1968) 433.
- 13 J. M. Shreeveand D. P. Babb, J. Inorg. Nucl. Chem., 29 (1967) 1815.
- 14 D. Pilipovich, M. B. Warner, W. Maya and R. D. Wilson, 7th Internat. Symp. Fluorine Chem., Santa Cruz, Calif. (U.S.A.), July 1973, Paper I-26.
- 15 J. R. Durig, J. W. Thompson and J. D. Witt, Inorg. Chem., 11 (1972) 2477.
- 16 D. P. Babb and J. M. Shreeve, Inorg. Chem., 6 (1967) 351.
- 17 A. H. Dinwoodie and R. N. Haszeldine, J. Chem. Soc., (1965) 1681.
- 18 R. E. Banks, R. N. Haszeldine and T. Myerscough, J. Chem. Soc. (Perkin Trans. I), (1972) 1449, 2336.
- 19 P. G. Thompson, J. Amer. Chem. Soc., 89 (1967) 1811.
- 20 D. D. DesMarteau, Inorg. Chem., 9 (1970) 2179.
- 21 M. Lustig, Inorg. Chem., 4 (1965) 1828.